Atomistic Modeling of Diffusion in Aluminum

نویسندگان

  • S. GRABOWSKI
  • K. KADAU
  • P. ENTEL
چکیده

We present molecular-dynamics simulations of self-diffusion in Al. In order to facilitate the description of elastic and vibrational properties as well as vacancy migration, an embedded-atom method potential was used in the simulations. This potential was specifically designed to reproduce the T = 0 K equation of state of Al obtained by ab initio total-energy calculations. We show that the temperature dependent self-diffusion coefficient obeys an Arrhenius law and that the resulting dynamical migration energy is slightly larger than the static migration energy obtained by using classical rate theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Atomistic Study of Interfacial Diffusion in Lamellar TiAl Alloys

In this paper we investigate self-diffusion of Ti and Al along interfaces present in the lamellar L10 TiAl by atomistic computer modeling. The interactions between the atoms are described by centralforce many-body potentials. The approach adopted is similar to that used in earlier atomistic modeling of bulk diffusion in TiAl [1, 2]. Both the formation and migration of vacancies is examined. The...

متن کامل

An atomistic investigation into the nature of near threshold fatigue crack growth in aluminum alloys

Despite decades of study, the atomic-scale mechanisms of fatigue crack growth remain elusive. Here we use the coupled atomistic–discrete dislocation method, a multiscale simulation method, to examine the influence of dislocation glide resistance on near-threshold fatigue crack growth in an aluminum alloy. The simulations indicate that the threshold increases with an increase in dislocation glid...

متن کامل

MULTISCALE MODELING OF DAMAGE PROCESSES IN fcc ALUMINUM: FROM ATOMS TO GRAINS

Molecular dynamics (MD) methods are opening new opportunities for simulating the fundamental processes of material behavior at the atomistic level. However, current analysis is limited to small domains and increasing the size of the MD domain quickly presents intractable computational demands. A preferred approach to surmount this computational limitation has been to combine continuum mechanics...

متن کامل

The Contribution of Molecular Diffusion in Silica Coating and Chemical Reaction in the Overall Rate of Reaction of Aluminum Hydroxide with Fluosilicic Acid

The kinetic of the heterogeneous chemical reaction of aluminum hydroxide and fluosilicic acid was studied. It was found that the diffusion of the reactants through the porous silica coating to the aluminum hydroxide surface and the interfacial chemical reaction between the diffusing reactant and aluminum hydroxide platelets control the overall reaction rate. These two phenomena were studied...

متن کامل

Fast reaction mechanism of a core„Al...-shell „Al2O3... nanoparticle in oxygen

Atomistic mechanisms of oxidation in a laser flash heated core !Aluminum"-shell !Alumina" nanoparticle are investigated using multimillion-atom molecular dynamics simulations. We find a thermal-to-mechanochemical transition of oxidation mechanism when the initial core temperature is above 6000 K. The transition from thermal diffusion to mechanically enhanced diffusion to ballistic transport is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000